|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectit.unimi.dsi.fastutil.doubles.AbstractDouble2IntFunction
it.unimi.dsi.fastutil.doubles.AbstractDouble2IntMap
it.unimi.dsi.fastutil.doubles.Double2IntOpenHashMap
public class Double2IntOpenHashMap
A type-specific hash map with a fast, small-footprint implementation.
Instances of this class use a hash table to represent a map. The table is
enlarged as needed by doubling its size when new entries are created, but it is never made
smaller (even on a clear()
). A family of trimming
methods lets you control the size of the table; this is particularly useful
if you reuse instances of this class.
Warning: The implementation of this class has significantly
changed in fastutil
6.1.0. Please read the
comments about this issue in the section “Faster Hash Tables” of the overview.
Hash
,
HashCommon
,
Serialized FormNested Class Summary |
---|
Nested classes/interfaces inherited from class it.unimi.dsi.fastutil.doubles.AbstractDouble2IntMap |
---|
AbstractDouble2IntMap.BasicEntry |
Nested classes/interfaces inherited from interface it.unimi.dsi.fastutil.Hash |
---|
Hash.Strategy<K> |
Nested classes/interfaces inherited from interface it.unimi.dsi.fastutil.doubles.Double2IntMap |
---|
Double2IntMap.Entry, Double2IntMap.FastEntrySet |
Field Summary | |
---|---|
static long |
serialVersionUID
|
Fields inherited from interface it.unimi.dsi.fastutil.Hash |
---|
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR |
Constructor Summary | |
---|---|
Double2IntOpenHashMap()
Creates a new hash map with initial expected Hash.DEFAULT_INITIAL_SIZE entries
and Hash.DEFAULT_LOAD_FACTOR as load factor. |
|
Double2IntOpenHashMap(double[] k,
int[] v)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
|
Double2IntOpenHashMap(double[] k,
int[] v,
float f)
Creates a new hash map using the elements of two parallel arrays. |
|
Double2IntOpenHashMap(Double2IntMap m)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
|
Double2IntOpenHashMap(Double2IntMap m,
float f)
Creates a new hash map copying a given type-specific one. |
|
Double2IntOpenHashMap(int expected)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor. |
|
Double2IntOpenHashMap(int expected,
float f)
Creates a new hash map. |
|
Double2IntOpenHashMap(Map<? extends Double,? extends Integer> m)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
|
Double2IntOpenHashMap(Map<? extends Double,? extends Integer> m,
float f)
Creates a new hash map copying a given one. |
Method Summary | |
---|---|
int |
add(double k,
int incr)
Adds an increment to value currently associated with a key. |
void |
clear()
Removes all associations from this function (optional operation). |
Double2IntOpenHashMap |
clone()
Returns a deep copy of this map. |
boolean |
containsKey(double k)
Checks whether the given value is contained in AbstractDouble2IntMap.keySet() . |
boolean |
containsValue(int v)
Checks whether the given value is contained in AbstractDouble2IntMap.values() . |
Double2IntMap.FastEntrySet |
double2IntEntrySet()
Returns a type-specific set view of the mappings contained in this map. |
int |
get(double k)
Returns the value to which the given key is mapped. |
Integer |
get(Double ok)
|
int |
growthFactor()
Deprecated. Since fastutil 6.1.0, hash tables are doubled when they are too full. |
void |
growthFactor(int growthFactor)
Deprecated. Since fastutil 6.1.0, hash tables are doubled when they are too full. |
int |
hashCode()
Returns a hash code for this map. |
boolean |
isEmpty()
|
DoubleSet |
keySet()
Returns a type-specific-set view of the keys of this map. |
int |
put(double k,
int v)
Adds a pair to the map. |
Integer |
put(Double ok,
Integer ov)
Delegates to the corresponding type-specific method, taking care of returning null on a missing key. |
boolean |
rehash()
Deprecated. A no-op. |
int |
remove(double k)
Removes the mapping with the given key. |
Integer |
remove(Object ok)
Delegates to the corresponding type-specific method, taking care of returning null on a missing key. |
int |
size()
Returns the intended number of keys in this function, or -1 if no such number exists. |
boolean |
trim()
Rehashes the map, making the table as small as possible. |
boolean |
trim(int n)
Rehashes this map if the table is too large. |
IntCollection |
values()
Returns a type-specific-set view of the values of this map. |
Methods inherited from class it.unimi.dsi.fastutil.doubles.AbstractDouble2IntMap |
---|
containsValue, entrySet, equals, putAll, toString |
Methods inherited from class it.unimi.dsi.fastutil.doubles.AbstractDouble2IntFunction |
---|
containsKey, defaultReturnValue, defaultReturnValue, get |
Methods inherited from class java.lang.Object |
---|
getClass, notify, notifyAll, wait, wait, wait |
Methods inherited from interface it.unimi.dsi.fastutil.doubles.Double2IntFunction |
---|
defaultReturnValue, defaultReturnValue |
Methods inherited from interface it.unimi.dsi.fastutil.Function |
---|
containsKey, get |
Methods inherited from interface java.util.Map |
---|
containsKey, get |
Field Detail |
---|
public static final long serialVersionUID
Constructor Detail |
---|
public Double2IntOpenHashMap(int expected, float f)
The actual table size will be the least power of two greater than expected
/f
.
expected
- the expected number of elements in the hash set.f
- the load factor.public Double2IntOpenHashMap(int expected)
Hash.DEFAULT_LOAD_FACTOR
as load factor.
expected
- the expected number of elements in the hash map.public Double2IntOpenHashMap()
Hash.DEFAULT_INITIAL_SIZE
entries
and Hash.DEFAULT_LOAD_FACTOR
as load factor.
public Double2IntOpenHashMap(Map<? extends Double,? extends Integer> m, float f)
m
- a Map
to be copied into the new hash map.f
- the load factor.public Double2IntOpenHashMap(Map<? extends Double,? extends Integer> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.
m
- a Map
to be copied into the new hash map.public Double2IntOpenHashMap(Double2IntMap m, float f)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.public Double2IntOpenHashMap(Double2IntMap m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.
m
- a type-specific map to be copied into the new hash map.public Double2IntOpenHashMap(double[] k, int[] v, float f)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.
IllegalArgumentException
- if k
and v
have different lengths.public Double2IntOpenHashMap(double[] k, int[] v)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.
IllegalArgumentException
- if k
and v
have different lengths.Method Detail |
---|
public int put(double k, int v)
Double2IntFunction
put
in interface Double2IntFunction
put
in class AbstractDouble2IntFunction
k
- the key.v
- the value.
Function.put(Object,Object)
public Integer put(Double ok, Integer ov)
AbstractDouble2IntFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
put
in interface Function<Double,Integer>
put
in interface Map<Double,Integer>
put
in class AbstractDouble2IntFunction
ok
- the key.ov
- the value.
null
if no value was present for the given key.Map.put(Object,Object)
public int add(double k, int incr)
Note that this method respects the default return value semantics: when called with a key that does not currently appears in the map, the key will be associated with the default return value plus the given increment.
k
- the key.incr
- the increment.
public int remove(double k)
Double2IntFunction
remove
in interface Double2IntFunction
remove
in class AbstractDouble2IntFunction
Function.remove(Object)
public Integer remove(Object ok)
AbstractDouble2IntFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
remove
in interface Function<Double,Integer>
remove
in interface Map<Double,Integer>
remove
in class AbstractDouble2IntFunction
null
if no value was present for the given key.Map.remove(Object)
public Integer get(Double ok)
public int get(double k)
Double2IntFunction
get
in interface Double2IntFunction
k
- the key.
Function.get(Object)
public boolean containsKey(double k)
AbstractDouble2IntMap
AbstractDouble2IntMap.keySet()
.
containsKey
in interface Double2IntFunction
containsKey
in class AbstractDouble2IntMap
Function.containsKey(Object)
public boolean containsValue(int v)
AbstractDouble2IntMap
AbstractDouble2IntMap.values()
.
containsValue
in interface Double2IntMap
containsValue
in class AbstractDouble2IntMap
Map.containsValue(Object)
public void clear()
Function
clear
in interface Function<Double,Integer>
clear
in interface Map<Double,Integer>
clear
in class AbstractDouble2IntFunction
Map.clear()
public int size()
Function
Most function implementations will have some knowledge of the intended number of keys in their domain. In some cases, however, this might not be possible.
size
in interface Function<Double,Integer>
size
in interface Map<Double,Integer>
public boolean isEmpty()
isEmpty
in interface Map<Double,Integer>
isEmpty
in class AbstractDouble2IntMap
@Deprecated public void growthFactor(int growthFactor)
fastutil
6.1.0, hash tables are doubled when they are too full.
growthFactor
- unused.@Deprecated public int growthFactor()
fastutil
6.1.0, hash tables are doubled when they are too full.
growthFactor(int)
public Double2IntMap.FastEntrySet double2IntEntrySet()
Double2IntMap
This method is necessary because there is no inheritance along
type parameters: it is thus impossible to strengthen Double2IntMap.entrySet()
so that it returns an ObjectSet
of objects of type Double2IntMap.Entry
(the latter makes it possible to
access keys and values with type-specific methods).
double2IntEntrySet
in interface Double2IntMap
Double2IntMap.entrySet()
public DoubleSet keySet()
AbstractDouble2IntMap
The view is backed by the set returned by AbstractDouble2IntMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
keySet
in interface Double2IntMap
keySet
in interface Map<Double,Integer>
keySet
in class AbstractDouble2IntMap
Map.keySet()
public IntCollection values()
AbstractDouble2IntMap
The view is backed by the set returned by AbstractDouble2IntMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
values
in interface Double2IntMap
values
in interface Map<Double,Integer>
values
in class AbstractDouble2IntMap
Map.values()
@Deprecated public boolean rehash()
If you need to reduce the table size to fit exactly
this set, use trim()
.
trim()
public boolean trim()
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
If the table size is already the minimum possible, this method does nothing.
trim(int)
public boolean trim(int n)
Let N be the smallest table size that can hold
max(n,
entries, still satisfying the load factor. If the current
table size is smaller than or equal to N, this method does
nothing. Otherwise, it rehashes this map in a table of size
N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.
trim()
public Double2IntOpenHashMap clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
clone
in class Object
public int hashCode()
equals()
is not overriden, it is important
that the value returned by this method is the same value as
the one returned by the overriden method.
hashCode
in interface Map<Double,Integer>
hashCode
in class AbstractDouble2IntMap
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |