View Javadoc

1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math.special;
18  
19  import org.apache.commons.math.MathException;
20  import org.apache.commons.math.util.ContinuedFraction;
21  
22  /**
23   * This is a utility class that provides computation methods related to the
24   * Beta family of functions.
25   *
26   * @version $Revision: 780933 $ $Date: 2009-06-02 00:39:12 -0400 (Tue, 02 Jun 2009) $
27   */
28  public class Beta {
29  
30      /** Maximum allowed numerical error. */
31      private static final double DEFAULT_EPSILON = 10e-15;
32  
33      /**
34       * Default constructor.  Prohibit instantiation.
35       */
36      private Beta() {
37          super();
38      }
39  
40      /**
41       * Returns the
42       * <a href="http://mathworld.wolfram.com/RegularizedBetaFunction.html">
43       * regularized beta function</a> I(x, a, b).
44       * 
45       * @param x the value.
46       * @param a the a parameter.
47       * @param b the b parameter.
48       * @return the regularized beta function I(x, a, b)
49       * @throws MathException if the algorithm fails to converge.
50       */
51      public static double regularizedBeta(double x, double a, double b)
52          throws MathException
53      {
54          return regularizedBeta(x, a, b, DEFAULT_EPSILON, Integer.MAX_VALUE);
55      }
56  
57      /**
58       * Returns the
59       * <a href="http://mathworld.wolfram.com/RegularizedBetaFunction.html">
60       * regularized beta function</a> I(x, a, b).
61       * 
62       * @param x the value.
63       * @param a the a parameter.
64       * @param b the b parameter.
65       * @param epsilon When the absolute value of the nth item in the
66       *                series is less than epsilon the approximation ceases
67       *                to calculate further elements in the series.
68       * @return the regularized beta function I(x, a, b)
69       * @throws MathException if the algorithm fails to converge.
70       */
71      public static double regularizedBeta(double x, double a, double b,
72          double epsilon) throws MathException
73      {
74          return regularizedBeta(x, a, b, epsilon, Integer.MAX_VALUE);
75      }
76  
77      /**
78       * Returns the regularized beta function I(x, a, b).
79       * 
80       * @param x the value.
81       * @param a the a parameter.
82       * @param b the b parameter.
83       * @param maxIterations Maximum number of "iterations" to complete. 
84       * @return the regularized beta function I(x, a, b)
85       * @throws MathException if the algorithm fails to converge.
86       */
87      public static double regularizedBeta(double x, double a, double b,
88          int maxIterations) throws MathException
89      {
90          return regularizedBeta(x, a, b, DEFAULT_EPSILON, maxIterations);
91      }
92      
93      /**
94       * Returns the regularized beta function I(x, a, b).
95       * 
96       * The implementation of this method is based on:
97       * <ul>
98       * <li>
99       * <a href="http://mathworld.wolfram.com/RegularizedBetaFunction.html">
100      * Regularized Beta Function</a>.</li>
101      * <li>
102      * <a href="http://functions.wolfram.com/06.21.10.0001.01">
103      * Regularized Beta Function</a>.</li>
104      * </ul>
105      * 
106      * @param x the value.
107      * @param a the a parameter.
108      * @param b the b parameter.
109      * @param epsilon When the absolute value of the nth item in the
110      *                series is less than epsilon the approximation ceases
111      *                to calculate further elements in the series.
112      * @param maxIterations Maximum number of "iterations" to complete. 
113      * @return the regularized beta function I(x, a, b)
114      * @throws MathException if the algorithm fails to converge.
115      */
116     public static double regularizedBeta(double x, final double a,
117         final double b, double epsilon, int maxIterations) throws MathException
118     {
119         double ret;
120 
121         if (Double.isNaN(x) || Double.isNaN(a) || Double.isNaN(b) || (x < 0) ||
122             (x > 1) || (a <= 0.0) || (b <= 0.0))
123         {
124             ret = Double.NaN;
125         } else if (x > (a + 1.0) / (a + b + 2.0)) {
126             ret = 1.0 - regularizedBeta(1.0 - x, b, a, epsilon, maxIterations);
127         } else {
128             ContinuedFraction fraction = new ContinuedFraction() {
129 
130                 @Override
131                 protected double getB(int n, double x) {
132                     double ret;
133                     double m;
134                     if (n % 2 == 0) { // even
135                         m = n / 2.0;
136                         ret = (m * (b - m) * x) /
137                             ((a + (2 * m) - 1) * (a + (2 * m)));
138                     } else {
139                         m = (n - 1.0) / 2.0;
140                         ret = -((a + m) * (a + b + m) * x) /
141                                 ((a + (2 * m)) * (a + (2 * m) + 1.0));
142                     }
143                     return ret;
144                 }
145 
146                 @Override
147                 protected double getA(int n, double x) {
148                     return 1.0;
149                 }
150             };
151             ret = Math.exp((a * Math.log(x)) + (b * Math.log(1.0 - x)) -
152                 Math.log(a) - logBeta(a, b, epsilon, maxIterations)) *
153                 1.0 / fraction.evaluate(x, epsilon, maxIterations);
154         }
155 
156         return ret;
157     }
158 
159     /**
160      * Returns the natural logarithm of the beta function B(a, b).
161      * 
162      * @param a the a parameter.
163      * @param b the b parameter.
164      * @return log(B(a, b))
165      */
166     public static double logBeta(double a, double b) {
167         return logBeta(a, b, DEFAULT_EPSILON, Integer.MAX_VALUE);
168     }
169     
170     /**
171      * Returns the natural logarithm of the beta function B(a, b).
172      *
173      * The implementation of this method is based on:
174      * <ul>
175      * <li><a href="http://mathworld.wolfram.com/BetaFunction.html">
176      * Beta Function</a>, equation (1).</li>
177      * </ul>
178      * 
179      * @param a the a parameter.
180      * @param b the b parameter.
181      * @param epsilon When the absolute value of the nth item in the
182      *                series is less than epsilon the approximation ceases
183      *                to calculate further elements in the series.
184      * @param maxIterations Maximum number of "iterations" to complete. 
185      * @return log(B(a, b))
186      */
187     public static double logBeta(double a, double b, double epsilon,
188         int maxIterations) {
189             
190         double ret;
191 
192         if (Double.isNaN(a) || Double.isNaN(b) || (a <= 0.0) || (b <= 0.0)) {
193             ret = Double.NaN;
194         } else {
195             ret = Gamma.logGamma(a) + Gamma.logGamma(b) -
196                 Gamma.logGamma(a + b);
197         }
198 
199         return ret;
200     }
201 }