View Javadoc

1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math.optimization.fitting;
19  
20  import org.apache.commons.math.FunctionEvaluationException;
21  
22  /**
23   * An interface representing a real function that depends on one independent
24   * variable plus some extra parameters.
25   *  
26   * @version $Revision: 786479 $ $Date: 2009-06-19 08:36:16 -0400 (Fri, 19 Jun 2009) $
27   */
28  public interface ParametricRealFunction {
29  
30      /**
31       * Compute the value of the function.
32       * @param x the point for which the function value should be computed
33       * @param parameters function parameters
34       * @return the value
35       * @throws FunctionEvaluationException if the function evaluation fails
36       */
37      public double value(double x, double[] parameters)
38          throws FunctionEvaluationException;
39  
40      /**
41       * Compute the gradient of the function with respect to its parameters.
42       * @param x the point for which the function value should be computed
43       * @param parameters function parameters
44       * @return the value
45       * @throws FunctionEvaluationException if the function evaluation fails
46       */
47      public double[] gradient(double x, double[] parameters)
48          throws FunctionEvaluationException;
49  
50  }